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Abstract. Originally studied by Conway and Coxeter, friezes appeared in various recre-
ational mathematics publications in the 1970s. More recently, in 2015, Baur, Parsons,
and Tschabold constructed periodic infinite friezes and related them to matching num-
bers in the once-punctured disk and annulus. In this paper, we study such infinite
friezes with an eye towards cluster algebras of type D and affine A, respectively. By
examining infinite friezes with Laurent polynomials entries, we discover new symme-
tries and formulas relating the entries of this frieze to one another.
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1 Introduction

A Conway-Coxeter frieze F = {Fij}i≤j is an array of rows (arranged and indexed as in
Figure 1) such that Fi,i = 0 and Fi,i+1 = 1, and, for every diamond

c
a b

d

of entries in the frieze, the equation ab− cd = 1 is satisfied.
We say a frieze is finite if it is bounded above and below by a row of 1s. In the

70s, Conway and Coxeter showed that finite friezes with positive integer entries are in
bijection with triangulations of polygons [10, 9]. Given a triangulation T of a polygon,
each entry of the second row of the corresponding frieze is the number of triangles
adjacent to a vertex. Broline, Crowe, and Isaacs further studied this in [6] and found that
every entry in such a frieze corresponds to a diagonal (see Figure 2). To any diagonal,
they associate a set of vertices vi1 , . . . , vir (those lying to the right) and then match these
to a BCI r-tuple (t1, . . . , tr) of pairwise-distinct triangles in T, such that tj is incident to
vertex vij . For example, in Figure 3, the diagonal from vertex v5 to vertex v3 is associated
to the vertices v1 and v2. There are exactly two BCI 2-tuples corresponding to v1 and v2.
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0 0 0 0 0

· · · 1 1 1 1 1 · · ·
F−1,1 F0,2 F1,3 F2,4 F3,5

· · · F−1,2 F0,3 F1,4 F2,5 F3,6 · · ·
F−1,3 F0,4 F1,5 F2,6 F3,7

. . .
. . .

Figure 1: Arrangement and indices for frieze entries.

· · ·

· · ·

1 1 1 1 1 1 1 · · ·
Row 2 · · · 3 1 2 2 1 3 1

2 2 1 3 1 2 2 · · ·
· · · 1 1 1 1 1 1 1

Figure 2: Diagonals of a polygon correspond to entries of a finite frieze.
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Figure 3: The BCI 2-tuples for γ which match vertices v1 & v2 to their adjacent triangles,
and the corresponding trails whose weights sum up to the expansion xγ = a

b +
1
b .

More recently, Caldero and Chapoton in [7] showed that finite frieze patterns appear
in the context of Fomin–Zelevinsky cluster algebras [12] of type A. Carroll and Price
in [8] gave an expansion formula for cluster variables of type A in terms of BCI tuples
(see [14, Appendix A] and Figure 3). Enumerating BCI tuples is equivalent to counting
perfect matchings in a bipartite graph whose nodes are the triangles and vertices of
(respectively a snake graph associated to) a triangulation; see Sec. 2 (respectively Sec. 4)
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Figure 4: First 5 rows of the infinite frieze from a pentagon triangulation.

of [17].
A frieze is said to be infinite if it is not bounded below by a row of 1s. Infinite

friezes of positive integers arising from once-punctured disks were introduced in [21]
by Tschabold. Given an ideal triangulation T (in the sense of [11]) of a once-punctured
disk with n marked boundary vertices labeled v1, v2, . . . , vn counterclockwise around the
boundary, we can count the number of BCI tuples in a similar way, see Figure 4.

In [3], Baur, Parsons, and Tschabold went further and gave a complete characteriza-
tion of infinite friezes of positive integers via triangulations of quotients of an infinite
strip in the plane. In this classification, periodic friezes arise from triangulations of the
annulus or of the once-punctured disk (which can be thought of as a quotient of the
infinite strip), see Figure 5. An infinite frieze is said to be of type D or type Ã, if it arises
from a once-punctured disk or annulus, respectively. Related work on friezes of type D
and Ã include [18, 2, 1, 5, 19, 4, 13].

v2

v3

v4

v5v1

τ1

τ2 τ3

τ4

τ5

 

v1 v2 v3 v4 v5 v1
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τ3 τ4 τ5
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Figure 5: Triangulation of a once-punctured pentagon drawn as an asymptotic trian-
gulation (see [3, Lemma 3.6]).

This is an extended abstract of [14], where we study infinite friezes whose entries are
Laurent polynomials (as opposed to positive integers). In Section 2, we give the neces-
sary background. In Section 3.1, we construct an infinite frieze of Laurent polynomials
associated to generalized peripheral arcs. In Section 3.2, we introduce complementary arcs,
which are arcs between the same two vertices in a surface, but of alternate direction. We
use these complementary arcs to describe progressions of arcs in the frieze (Theorem 3.4).
In Section 3.3, we show that growth coefficients (as defined in [4]) of the frieze are equal to
Laurent polynomials corresponding to certain curves called bracelets in the surface. We
state further combinatorial results in Sections 3.4 and 3.5.
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2 Background

2.1 Cluster algebras from surfaces

We provide a brief background on cluster algebras arising from marked surfaces (S, M),
following Fomin, Shapiro, and Thurston [11]. Let S be either an annulus or a disk, and
M a non-empty, finite set of marked points in the closure of S, such that there is at least
one marked point on each boundary component of S. The interior marked points in S
are called punctures.

A generalized ordinary arc γ in (S, M) is a curve in S, considered up to isotopy, such
that: (1) the endpoints of γ are in M, (2) the interior of γ is disjoint from M and from the
boundary of S, (3) γ does not cut out an unpunctured monogon or bigon. Generalized
arcs are allowed to intersect themselves a finite number of times. We consider these up
to isotopy of immersed arcs, that is, allowing Reidemeister moves of types II and III but
not of type I. In particular, an isotopy cannot remove a contractible kink (see Figure 15,
bottom) from a generalized arc. If an arc intersects itself in its interior, we say that the
arc has a self-crossing.

A boundary edge is a curve that connects two marked points and lies entirely on the
boundary of S without passing through a third marked point. A generalized arc γ is
called peripheral on a single boundary component Bd of S if: (1) both its endpoints (or its
unique endpoint in the case of a loop) are on Bd, and (2) γ is isotopic to a concatenation
of two or more boundary edges of a boundary component Bd. Our convention is to
choose the orientation of γ so that Bd is to the right of γ when looking from above.

An ordinary arc γ is a generalized ordinary arc which has no self-crossing. We say that
two ordinary arcs α, β are compatible if there exist representatives α′, β′ in their respective
isotopy classes such that α′ and β′ do not intersect in the interior of S. An ideal triangu-
lation T is a maximal (by inclusion) collection of distinct, pairwise compatible ordinary
arcs (see Figure 5, left).

Due to [11, Thm. 7.11], we can associate a signed adjacency matrix BT, and hence a
cluster algebra, to T. The ordinary arcs τ of (S, M) correspond to cluster variables and
products of cluster variables, denoted by xτ or x(τ).

2.2 Laurent polynomials associated to generalized arcs and closed loops

In [16, 15], Schiffler, Williams, and the second author associated to a generalized arc
(respectively, closed loop) γ and an ideal triangulation T a Laurent polynomial XT

γ which
is a weighted sum over perfect matchings of a planar snake graph (respectively, a band on a
Möbius strip or annulus) GT,γ. Put simply, such graphs are made out of gluing squares
together, with one such square for each arc of T crossed by γ; see Figure 6, right. A
perfect matching of a graph G is a subset P of the edges of G such that each vertex of G
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is incident to exactly one edge of P. If G is a snake or band graph, and the edges of a
perfect matching P of G are labeled τj1 , . . . , τjr , then we define the weight x(P) of P to be
xτj1
· · · xτjr

. If τ is a boundary segment, we let xτ := 1.

Definition 2.1 ([15, Def. 3.12]). Let T be an ideal triangulation,A the cluster algebra associated
to BT, and γ be a generalized arc. We define a Laurent polynomial which lies in A.

1. If γ cuts out a contractible monogon, then XT
γ is equal to zero.

2. If γ has a contractible kink, let γ denote the corresponding generalized arc with this kink
removed, and define XT

γ := (−1)XT
γ .

3. Otherwise, let τi1 , τi2 , . . . , τid be the sequence of arcs in T which γ crosses. Define

XT
γ :=

1
τi1 τi2 . . . τid

∑
P

x(P),

where the sum is over all perfect matchings P of GT,γ.

Theorem 2.2 ([16, Thm 4.10]). When γ is an ordinary arc with no self-crossings, XT
γ is equal

to the Laurent expansion of the cluster variable xγ with respect to T.

Example 2.3. The snake graph GT,γ associated to the generalized arc γ in Figure 6 has 11 perfect
matchings. Following Definition 2.1, we compute

XT
γ =

x0x1x4 + 2x1x3x4 + 2x2
0 + 4x0x3 + 2x2

3
x0x1x4

by specializing xτ = 1 for each boundary edge τ.

A Laurent polynomial XT
ζ is associated to any closed loop ζ by a similar formula,

see [15, Def. 3.14]. A closed loop obtained by following a (non-contractible, non-self-
crossing, kink-free) loop k times, and thus creating k − 1 self-crossings, is called a k-
bracelet and is denoted by Brack, see Figure 7.

For the rest of the paper, we will use the notation xγ or x(γ) to denote the Laurent
polynomial corresponding to γ, where γ is a generalized arc or loop.

3 Results

3.1 Infinite friezes of cluster algebra elements

Theorem 3.1. Let T be an ideal triangulation of a once-punctured disk or an annulus. Let Bd
be a boundary component with n marked points, where n ≥ 2. Then the Laurent polynomials
corresponding to generalized peripheral arcs on Bd form an infinite frieze pattern.
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Figure 6: Left: An ideal triangulation T and a generalized arc γ of a once-punctured
disk. Center: drawn on a strip. Right: Snake graph GT,γ.

Figure 7: Bracelets Brac1, Brac2, and Brac3.

We prove this theorem by applying skein relations, as illustrated in Figure 8. Further,
we lift arcs from a once-punctured disk (or annulus) to a covering space given by the
infinite strip. Given a triangulation of the infinite strip with marked points on a bound-
ary ∂, the peripheral arc γ(i, j) from i to j on ∂ corresponds to the (i, j)-th entry in the
infinite frieze pattern arising from this triangulation. See Figures 9 and 10.

i i + 1 i + m i + m + 1

=

i i + 1 i + m i + m + 1

+
i i + 1 i + m i + m + 1

Figure 8: Applying skein relations to prove Theorem 3.1

∂′

∂
i j

γ· · · · · ·

Figure 9: Triangulation of a strip and an arc γ(i, j) from i to j.

3.2 Complementary arcs and progression formulas

In this section, we present formulas governing relations among the Laurent polynomial
entries of the frieze of Theorem 3.1. These generalize the relations given in [4, Thm. 2.5].
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Figure 10: The first six rows of an infinite frieze of elements of the cluster algebra
corresponding to peripheral arcs of a punctured disk.

For 1 ≤ i, j ≤ n and k = 1, 2, . . . , we let γk(i, j) denote the generalized peripheral arc
that lifts to the covering by the strip as follows:

γk(i, j) =

{
γ (i, j + (k− 1)n) if i < j
γ (i, j + kn) if i ≥ j

.

That is, γk(i, j) is the generalized peripheral arc that starts at marked point i and finishes
at the marked point j (possibly with i = j) with (k − 1) self-crossings such that the
boundary Bd is to the right of the curve as we trace it.

Definition 3.2 (Complementary arc). Using the above shorthand notation, we define the arc
complementary to γk = γk(i, j) as

γk(i, j)C =

{
γ (j, i + kn) if i < j
γ (j, i + (k− 1)n) if i ≥ j

.

Remark 3.3. When i 6= j, the complementary arc γC
k to γk = γk(i, j) is the generalized arc

starting at j and finishing at i and retaining (k− 1) self-crossings while following the orientation
of the surface. See Figure 11. In this case, (γC

k )
C = γk. On the other hand, when i = j,

complementation is non-involutive and simply decreases the number of self-intersections by one.

Theorem 3.4 (Progression formulas). Let γ1 be a peripheral arc or a boundary edge of (S, M)
starting and finishing at points i and j. For k = 2, 3, . . . and 1 ≤ m ≤ k− 1, we have

x(γk) = x(γm) x(Brack−m) + x(γC
k−2m+1). (3.1)

For r ≥ 0, γC
−r is defined to be the curve γr+1 with a kink, so that x(γC

−r) = −x(γr+1).
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Figure 12: Case m = 1 for the progression formula (Theorem 3.4). Left: x(γ2) =

x(γ1)x(Brac1) + x(γC
1 ). Right: x(γ4) = x(γ1)x(Brac3) + x(γC

3 ).

Remark 3.5. In the above theorem, when m = 1 (see Figure 12) and m = k− 1, we have

x(γk) = x(γ1) x(Brack−1) + x(γC
k−1) and x(γk) = x(γk−1) x(Brac1)− x(γk−2). (3.2)

Compare (3.2), right, with [4, Thm. 2.5].

We give a sketch of our proof of Theorem 3.4. Let γk := γk(i, j). We draw γk so
that it first closely follows the other boundary (or the puncture) and then spirals out.
In the covering via the infinite horizontal strip, we draw the lower boundary Bd so that
i is drawn to the left of j in each frame. Each representative of γk is drawn starting
from a vertex labeled i at a frame Reg0. We go north, passing through all of the (k− 1)
crossings. We then turn southeast and finish at a vertex labeled j, which is located in the
frame k− 1 frames (respectively, k frames) east of Reg0 if i 6= j (respectively, if i = j). See
Figure 13.

We order the crossings of γk so that the first crossing is the one closest to Bd and the
(k − 1)-th crossing is the one furthest away from Bd. Resolving each representative of
the m-th crossing in each frame, we get γm and Brack−m (see Figure 14) and the curve
γC

k−2m+1 (see Figure 15), which correspond to the first and second summands of (3.1),
respectively.

3.3 Bracelets and growth coefficients

According to [4, Thm. 2.2], for an n-periodic infinite frieze of positive integers, the
difference between the entries in rows (nk + 1) & (nk − 1) and the same column is a
constant (see Figure 16). These differences are also constant in our infinite friezes of
Laurent polynomials, and we give geometric interpretations to these differences.
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j j j j j j j j j ji i i i i i i i i i

Regk−1· · ·Reg2Reg1Reg0
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Figure 13: Lift of γk for k = 10, m = 4 drawn on the strip.

j j j j j j j ji i i i i i i

Regk−1· · ·Reg4Reg3Reg2Reg1Reg0

c0

Figure 14: Lifts of γm and Brack−m for k = 10, m = 4 drawn on the strip.
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· · ·Reg−k+2m−1· · ·Reg1Reg0Reg−1Reg−2

c0

Figure 15: Lift of γC
k−2m+1 for k = 10 drawn on the strip. Top: m = 4, Bottom: m = 8.
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Proposition 3.6. Let F = {Fi,j} be an n-periodic frieze as described in Section 3.1. For each
k ≥ 1,

x(Brack) = Fi,i+1+kn −Fi+1,i+kn for all i ∈ Z.

Following [4, Def. 2.3], for k ≥ 0, we define the kth growth coefficient for F to be
s0 := 2, and sk := Fi,i+1+kn −Fi+1,i+kn, otherwise. We say that level k of a frieze consists
of the entries of the frieze indexed by (i, i + (k− 1)n + j) where j = 1, . . . , n. Note that
sk measures the difference between entries in the first row of the (k + 1)st level and the
penultimate row of the kth level. Also, per Proposition 3.6, sk = x(Brack) whenever
k ≥ 1, so we can use the two terms interchangeably.

Given a triangulation of an annulus, we get two different friezes corresponding to
the outer and inner boundaries. We see that their growth coefficients sk coincide since
Brack is defined independently of the choice of the boundary of an annulus. This agrees
with [4, Thm. 3.4].

−1 −1 −1 −1 −1 −1
0 0 0 0 0 0

1 1 1 1 1 1
1 2 6 1 2 6

1 11 5 1 11 5
5 9 4 5 9 4

4 7 19 4 7 19
3 33 15 3 33 15

14 26 11 14 26 11
11 19 51 11 19 51

8 88 40 8 88 40
37 69 29 37 69 29

29 50 134 29 50 134
... . . .

s0 = 2

s1 = 3

s2 = 7

s3 = 18

Figure 16: Growth coefficients in a frieze of type Ã.

3.4 Differences from complement symmetry

We consider the difference between frieze entries associated to complementary arcs. For
the once-punctured disk, this difference is constant across all levels and is determined
only by the endpoints of each arc.

Proposition 3.7. Let F be a frieze coming from a triangulation of a once-punctured disk or
annulus. Let γ1 = γ be an ordinary arc from i to j (possibly i = j) or a boundary edge from i
to i + 1. Define ck,γ := x (γk)− x

(
γC

k
)
, and write ck := ck,γ. Then, for k ≥ 2, we have the

relations
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1 1 1 1 1 1 1 1
6 1 4 1 2 6 1 4 1

5 3 3 1 11 5 3 3 1 · · ·
9 14 2 2 5 9 14 2 2 5

25 9 1 9 4 25 9 1 9 4
16 4 4 7 11 16 4 4 7 11

7 15 3 19 7 7 15 3 19 7 · · ·
26 11 8 12 3 26 11 8 12 3

· · · 19 29 5 5 11 19 29 5 5 11
50 18 2 18 8 50 18 2 18 8

31 7 7 13 21 31 7 7 13 21
12 24 5 34 13 12 24 5 34 13

· · · 41 17 13 21 5 41 17 13 21 5
29 44 8 8 17 29 44 8 8

75 27 3 27 12 75 27 3 27. . .

Figure 17: Arithmetic progressions in a frieze of type D.

(1) ck = (sk−1 − sk−2)c1 + ck−2, where we define c0 = c1;
(2) ck = c1

(
1 + ∑k−1

i=0 (−1)i+αsi

)
, where α = 1 if k is even and α = 0 otherwise.

Note that, if i = j, then c1 = x(γ1).

3.5 Arithmetic progressions

Tschabold showed that each diagonal of a frieze (of positive integers) arising from a once-
punctured disk is made up of a collection of arithmetic progressions [21, Prop. 3.11]. The
dotted and dashed circles in Figure 17 highlight two such arithmetic progressions.

Proposition 3.8 (Analog of [21, Thm. 3.11]). Suppose (S, M) is a once-punctured disk. Let
γ1 = γ be an ordinary arc from i to j (possibly i = j) or a boundary edge from i to i + 1. Then,
for k ≥ 2, we have x(γk) = x(γk−1) +

(
x(γ1) + x(γC

1 )
)

.
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